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Summary: The cross-section of an arbitrarily -shaped waveguide is tmrz:rmed
into a rectangle. The rectangular guide is filled with a nonuniform anisotropic
medium with such a distribution that the propagation properties are the same.
Feenberg's perturbation method and the Rayleigh-Ritz method can be used for
determining the propaaation characteristics and the field distribution of the

rectangular guide. The propagation constants of parabolic and elliptic guides

are determined by both methods and compared with the exact values.
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Introduction

The common rectangular and circular waveguides often do not have the
desired properties which can be obtained by other cross-sections. The ridged
waveguide is an example for such a guide. The compution of the properties and
characteristics of such nonconventional waveguides can be carried out by conformal
mapping as described by Tischer and Yee in preceding reports. '/

If the cross—section of an arbitrarily shaped air filled waveguide can be
transformed by conformal mapping into a rectangle, the analysis of the arbitrarily
shaped guide can be replaced by that of a rectangular guide filled with a
nonuniform and anisotropic medium. The propagation properties of the latter guide
can be computed by methods of solving partial differential equations of second
order with variable coefficients. Feenberg's perturbation method was desciibed
previously.

In cases where the Feenberg pertubation method is slowly convergent or
not convergent at all, the Rayleigh-Ritz method may be used for determining the
characteristics of the guide.

In this report the parabolic and the elliptic guide are considered as examples
[oi nun—conveniionully siiuped waveguides. Firsi, the paraboiic guide with a vane
is analyzed ond its characteristics computed by both Feenberg's and Rayleigh-Ritz
methods. The results are compared with the known exact solutions. Nexi, the
propagation constants for a number of vane modes of a semi-elliptical guide are

calculated.

Conformal Mapping

Two cross—sections of waveguides, one arbitrarily shaped and one rectangulas,

are assumed. The two cross~sections form lines of constant coordinates in two complex

l F. J. Tischer, Proc. IEEE, Vol. 51, pp. 1050, July 1963.

2 F. J. Tischer and H, Y. Yee, UARI Research Report No. 12, University of

Alabama Research Institute (1964).




planes as shown in Fig. |. Points along the cross-sections and boundaries are

interrelated by a complex function
R=p+jq="F(2),

where R = p + jq is the plane with the air filled cross-section, and Z = x + jy is
the plane with non-uniformly filled cross-section.

The original air-filled waveguide is bounded by a perfect conductor. The
rectangular equivalent guide which has perfectly conducting walls is filled by a
non-uniform anisotropic medium as shown in reference 2. The properties of the

medium are described by a tensor permittivity and permeability as follows:
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The wave equation for the rectangular guide is given by
A%+ i3y ¥ =0 (1)
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The quantity kz is the longitudinal propagation constant and Ag is the guide wave-
length. The scale factor h of the conformal mapping is given by

hey) = | € @]
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Fig. | - Cross-sections of waveguides in corresponding amplex planes. (a)
Arbitrary shape in the R-plane. (b) The corresponding rectangular
cross~section in the Z-plane.




The function ‘}1/‘ stands for the hypothetical components of the slectrical and
magnetic field intensities. For TE wave modes % = Hz, for TM wave modes

Y= Ez' The scalare function 3~ is subject to the boundary conditions:

YO, = YWay)= ¥x0= ¥b =0 ()

for TM modes. The corresponding conditions for TE modes are

s Vo) = g5 Wlem= g o)z & Wikbl=0 . @)

The next step consists in finding solutions of the wave equation [Eq. (1) | taking

into account the boundary conditions [ Eqs. (2) 1.

The Feenberg Perturbation Method

Except for four well known cases, Eq. (1) is nonseparable and no exact
solutions for arbitrary boundaries are known. Therefore, approximate techniques
must be used. Two methods of solving the wave equation by which the cut off
frequencies, the propagation constants, and the fields distributions can be computed
are described. They are Feenberg's perturbation method 2,3 and Rayleigh-Ritz
method.

Feenberg's method requires an expansion of the scalar function ¥ in terms

of a complete set of orthonormal functions {(pq} , i.e. set

W=l A 4. 3)

where d)q satisfies the boundary conditions as ¥~ does,

ffs¢r¢q dS = Srq s

3 P. M. Morse and H. Feshbach, Methods of Theoretical Physics, (McGraw=Hill

Book Company, Inc., New York, 1951) pp. 1010.




s = { ifr=a,
rq 0 ifr=q.
The summation is carried out over all possible values of q, the integration is
taken over the cross-section of the guide in the Z plane. Since Ay is continuous
over the region, substituting Eq. (3) into Eq. (1) and some manipulation yields

2 2
I (kB -L“6 A =0, 4
5 &8l ) (4)

where

2
A L =0
O tlg 4= (5)

2 _
B = S ¢ h 4 d5

and LCI is a constant. For a two dimensional problem, the subscript q denotes the

general indices

If p indicates a specific pair of m, n for TE or TM mode, Eq. (4) can be solved

. . . 2
for kzp by Feenberg's iterative approximate method as follows:

First order:
1)
2 2
k =L B ,
( P) o] / PP

Second order:

2, (20 _, 2
(kp) _Lp/{B
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higher order approximations and the expressions for the expansion coefficients
Aq can be found in reference 2, A suitable set of orthonormal functions which
are solutions of Eq. (5) and satisfy the pertinent boundary conditions for TE modes

is

¢q(1) = ‘fémen/ab cos (mmx/a) cos (my/b), (7a)

where em,n =1, ifm,n=0, and em,n =2 ifm,n# 0. The corresponding set

of functions for TM modes is

o 4D

a y 4/ab sin (mmy/b). (7b)

i

The constant Lq2 is given by

L2= L2

. = (/e + (m/b) ®)

The approximate eiaenfunction I!/P may be obtained from Ea. (3) in which the
expansion coefficients Aq can be calculated by substituting the approximate value

of kp2 as shown in reference 2.

In some cases, the successive approximation of Eq. (6) is slowly convergent or

not convergent at all. Under those conditions, other methods have to be applied.

The Rayleigh-Ritz Method

The difficulties resulting from non-convergence can be avoided by the Rayleigh-
Ritz mefhod.4'5 The application of this method to the present problem will be
described next.

H. Sagan, Boundary and Eigenvalue Problems in Mathematical Physics (John Wiley
and Son, Inc., New York, [961) Chapter 3

> R. Collin, Field Theory of Guided Waves (McGraw=Hill Book Company, Inc.,

New York, 1960) Chapter 6




It can be shown that
2 ffs wAY dS

ki = -
SRy tas

(9)

where the eigenvalue k is a stationary quantity. It is a minimum if the corresponding
eigenfunction ¥ is a solution of Eq. (1) and subject to the boundary conditions
as stated in Eqs. (2).
If the eigenfunction 4 is approximated by 17/‘ , then the corresponding
approximate eigenvalue
Jf ¥ oy ds
A= - (10)

S5 2w Zas

where 1 safisfies the same boundary conditions as Y~ does. The function

Y can be written as a finite series

Q™Mo
>
>

v o= q '3 )

The function ¢q is given by Eqgs. (7), where the subscript q denotes a pair of indices

m,n. The single sum then actually represents a finite double sum

N
)
n

Qg O
1l
IMZ

with M, N being integers. Under this condition, A > k2.

Since the quantity A of Eq. (10) is stationary, the scalar function ‘;b_ of
Eq. (10) has to be adjusted such that the quotion on the right hand side becomes a
minimum. By definition [Eq. (11) 1, the function ?/— has to be adjusted by varying

the coefficient Aq's only. It follows

oA
A

r

= 0, for r equal to all possible values of q .

Q)|




Substituting Eq. (11) into Eq. (10) and taking the partial differential with respect
to Ar yields

: 2 5 - M)A =0 (12)
9 9 m rq' q ~
where the constant Lq is defined by Eq. (8). Note that Eq. (I12) is similar to Eq. (4)
except the summation is summing over a finite number of terms instead of an infinite.
The consequence is that A iemains an approximation. Since r can be taking on
any pair of indices in q, Eq. (12) is a system of T linear homogeneous equations,
where T is the total number of terms in Eq. (11). In order to have a nontrivial
solution for the Aq's, the detemminent formed from the coefficients within the
parentheses vanishes. Therefore,
2
det. {L° 86 -B A[=0 (13)
q 19 n

Eq. (13) is an algebric equation for A of order T. Since the matrix form of the
determinant is real and symmetric, it always can be solved for T real roots of A by
o ... . & . ) L
iNewron's Method or by an electronic computer. If >\i denotes the i root

calculated by a T x T determinant of the form as Eq. (13) in which all the lower order

elements are included, and all roots are distinct, i.e. >\.'<)\2 10 S <A,

geeeee T
it can be shown that

..... > kiz (14)

)\.(i) S >\.(i+|) S )\.(i+2) >

for all i, where k.2 is the ith propagation constant of the waveguide. Since the
i
function ¥ can be expressed in terms of the complete infinite set of orthonormal

functions { ¢q } as shown in Eq. (3), it follows that

é G. B. Thomas, Jr., Calculus and Analytic Geometry, (Addison-Wesley Publishing

Company, Inc., 3rd ed. 1960) pp. 451
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The accuracy of the eigenvalue ki2 obtained by this method can be estimated by

observing the convergence of )\(T-] )/>\i (T) The expansion coefficients Aq can be

obtained by substituting >\i into Eq. (12) and solving for Aq in temms of Ai'

Parabolic Guide With Axial Vane

As an example of the application of the theory discussed previously, the
parabolic guide with axial vane is considered in this section. The cross-section of
this guide in the R-plane may be transformed into a rectangle in the Z-plane (see

Fig. 2) by means of the transformation function

R = Zz/c.

The scale factor may be obtained by taking the magnitude of the first differentiation

of R with respect to Z as follows:

2 2 2,2
h™ = 4 (x"+y")/a" .

It is possible to translate the y-axis in such a manner that it is collinear with the
boundary of the rectangle in the Z-plane as shown in Fig. | (b). However, for
simplicity, instead of doing this, it can be shown that for a scale factor which is

symmetric with respect to the y-axis, the eigenfunction can be expanded as follows:

Odd TM modes:

W = I A . J 2/ab sin (mmx/a) sin (mmy/b),
Even TE modes:

,)p = z:n,n Am,n /6m én/20b cos (mmx/a) cos (nmy/b),

where the boundaries of the rectangle are given by y = 0, y=b, x = —a, and x = a.
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Under this assumption, all integration is still taken over the cross-section of the

rectangular guide, and

For the discussed case, a = b. The even TM or the odd TE modes are not considered

L2mn = (m1r/c|)2+ (n1r/b)2,

since no exact solutions are available for comparison.

Consider the oddTM mode first, the quantity B in both Eqs. (6) and (13) is

given by

p

B =
qpsp

Several approximate eigenvalues of ka calculated by the Feenberg and Rayleigh-Ritz

-2 -
PR i
B ps= 8T [@-)

2

B o = ©/2) - (/D) + @/4%) 1 /n2,

-2

-@g+s) 1, s#p

method for the odd TM] ! mode are tabulated in Table 1 and Table 11, where the

subscript 1,1 indicates only one variation in both x and y direction.

Table 1 - Propagation constants computed by Feenberg's method

A A
—atna vt

R el

CKGCY vaiwwe

™, |

(odd)

(ka)")

(ka)?)

(ka)

Exact

2.955

2.762

2,788

2.78

Table 11 - Propagation constants computed by Rayleigh-Ritz method and
the exact value

|
™, | Mg

VA,

l Vb

J )\(Zb)a

\[)\(36)0

Exact

(odd) 2.955

2.843

l 2.795

2.780911

2.780895

2.78

The exact values is given by J|/4 (ka) = O for odd TMmm modes, J 3/4 (ka) = 0

for even TEmm modes. The roots were found in E. Jahnke and F. Emde, Tables of

Functions (Dover Publication, 4th edition, 1945)




For the odd TMl | mode, the Feenberg's method gives rapidly convergent
14
answer comparable to the exact value. Using only the three lowest order terms

in Eq. (12), the error of Rayleigh-Ritz method is approximately 0.5%. The values

of V A(29) a and >\(36) a were calculated by a 7094 computor and show that
ka = 2.780 is correct to four digits.

Considering the case of even TE modes, the quantity B is given by

B

8/3,

2000

=B =B =(-1 8 J2/pr), p#£O

pooo - Bopoo ~ “oopo ooop

2,2 -2
qu=(8/3)+2'ﬂ’ (P +q)l plq#o

P9

B =B =(8/3) +2/(pn), p#0

popo  opop
D — Db ! !\p'*'ro rs —|\-2 R A 21..—2 - 7
pqrq = Sqpgr ~ V0T Wy P

The first three order of approximations for the propagation constant k a of TE] 1
’

mode calculated by the Feenberg method are tabulated with the exact value in

Table 1II. The slow convergence results from the fact that the maximum of the
longitudinal magnetic field of the even TE modes of the air filled rectangular

guide is located at the same point where the permittivity and permeability of the
non-uniformly filled rectangular guide is zero. For the same reason the propagation
constants of the higher order even modes, like TE2,2, TE3’3 ......... etc., computed
by this method are not convergent at all. Using the 7094 computer to solve the

36 x 36 secular determinant of the Rayleigh-Ritz method, the approximate value of

ka for even TE] ! mode is 3.4913. This is an excellent solution in comparison




with the exact value.

Table 111 - Propagation constants computed by Feenberg's
method and the exact value

TE] R (ka)(l) (ka)(2) (ka)w) Exacf7

(even) 2.536 3.685 3.185 3.49

Semi-Elliptic Waveguide

As another example of the Feenberg's method, the semi-elliptic waveguide
will be investigated as follows:

The conformal transformation is

R=acos”Z
and transforms the cross-section of a semi-elliptic waveguide in the R-plane into
a rectangle in the Z-plane as shown in Fig. 3. The boundaries of the rectangle

areaty = 0, y = b, x=0, and x = 7. The scale factor h is given by

h2 = a2 (cosh2 y - coszx).

The quantity B is given by

T™:
Sinh 2b ) 2 2.9
qupq = - - b{sinh 28[ 4" + (2qm)"1 © + (|/4)8p,]
Boapa = V4 G2 ~81pm, 2
Bps = 5 bsinh 26) {1 467 + @=5)° 7217 - [4b% @s)2n217Y
TE:
B = sinh 2b/4b,
20092

Bpopo= (sinh 2b/4b) - (1/4) & o1
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Fig. 3 - Corresponding Cross~sections. (a) Semi-elliptic guide.
(b) Rectangular guide
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) 2 201 o %1
qupq =1 (|/4b) +b [4b° + (2q1r) 1 '} sinh 2b _4—, q 7{ 0
| B = - — (s 5 )
parq 4 ‘Tpir,2 * {p-r| , 2"
B g = (1 bsioh 2 (1462 @9)2n 217 4 (4624 @2 7", g £ s

J2

4 8p,2 ,

Pqoq ~ oqpq

- — (1 B . 2 22
qupo_Bpopq— (-1)" V2 bsinh 2b/(4b” + q" "),

The propagation constants of TM] 17 TM2| and TE]0 modes are computed by the
Feenberg method up to the 3rd ordef approximation. They are tabulated in Table 1V

I

and compared with the exact values.

Table IV - Propagation constants computed by Feenberg's
Method with exact values

! ! ! 1

(ka)! )@ | )@ Exact®
™, | 3.182 3.073 | 3.082 3.0
T U T ST N ]
™,, | 4.104 3.839 | 3.885 /
TE L, 1,234 1.203 | 1.204 1.2

Note that the convergence is very good for these three cases, but no convergence
is obtained for the TE” mode. This can be explained by the same reason as in the

previous example.

8 Calculated from curves given by L. J. Chu, J. Appl. Phys. vol 9, pp. 583,
September 1938




Discussion

The cross-section of an arbitrarily~-shaped waveguide is transformed into
a rectangle. The equivalent rectangular guide is then filled with a nonuniform,
anisotropic medium. The Feenberg perturbation method and the Rayleigh-Ritz
method can be used for determining the propagation characteristics and the field
components distribution. The latter method is preferable in cases where the
convergence of the former method is not satisfactory. For higher-order modes,
the Feenberg's method is simpler if the convergence is satisfactory. The computed
examples show that good approximation can be achieved with small number of
terms.

[t should be mentioned that the arbitrary cross-section also can be trans-
formed into a circle. The basic equations remain the same except the expansion
of the eigenfunction ¥ in terms of cylindrical functions. The expansion is

Y= )r:n)r:1 A nJ m (o(mnr) cosme,

m

the cylinderical conducting wall.
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